КАЧЕСТВО

Альтернативные СВЧ-материалы для Печатных плат

Текст: Аркадий Медведев Петр Семенов Аркадий Сержантов

радиционно считается, что материалы печатных плат для СВЧ-устройств — это фторопласты, немного — LTCC-керамика и совсем не учитывается возможность использования стеклоэпоксидных композиций, специально разработанных для СВЧ-применения. Однако если подходить к выбору материалов, используя многофакторные критерии, можно в СВЧ-диапазоне найти место и для современных фольгированных стеклоэпоксидных композиций, хорошо освоенных в производстве печатных плат¹.

Сегодня для изготовления СВЧ-плат используется ограниченный ряд материалов: политетрафторэтилен (РТFE – фторопласт, тефлон, Rogers – РТFE с керамическим наполнением), LTCC-керамика, фольгированные стеклоэпоксидные композиты. Конечно, с точки зрения диэлектрических свойств наилучшим СВЧ-материалом является РТFE – его диэлектрическая проницаемость,

тангенс угла потерь и водопоглощение самые низкие из всего многообразия твердых диэлектриков. Но технологические трудности обработки заставляют использовать его только в исключительных случаях, когда СВЧсвойства превалируют над его нетехнологичностью.

Производство плат из LTCC-керамики – совершенно другое производство, в корне отличающееся от широко распространенного производства печатных плат по базовой технологии, использующей фольгированные диэлектрики из стеклоэпоксидных композиций. Присущая керамике усадка при обжиге, а точнее – разброс усадки по осям X, Y, Z (зависит от режимов ламинирования слоев, обжига керамики, свойств исходных материалов и т. д.) не позволяет обеспечить достаточную геометрическую точность больших размеров монтажных подложек.

Наибольшей технологичностью обладают фольгиро-

ванные стеклоэпоксидные диэлектрики, используемые почти на всех предприятиях электроники. Но возможности их применения в СВЧ-диапазоне вызывают сомнения, которые сегодня не могут быть категоричными.

Если подходить к выбору материалов подложек с позиций формирования линий связи — основной функции СВЧ-плат — можно выделить два параметра, определяющих их работоспособность: затухание (потери) сигналов в линии и скорость распространения сигналов.

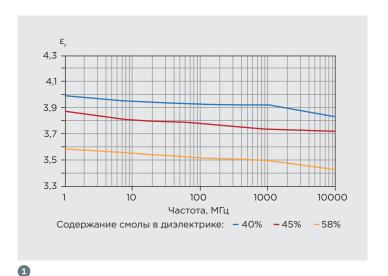
Известно, что потери в линиях пропорциональны диэлектрической проницаемости и тангенсу угла диэлектрических потерь. Мощность потерь в линиях оценивается как:

$P = U^2 \omega C tg \delta$,

где U – напряжение на линии,

С – ёмкость линии,

 $tg \delta$ – тангенс угла диэлектрических потерь.


Диэлектрические потери в 1 см 3 диэлектрика в однородном поле Е равны:

$P = E^2 \omega \epsilon_z tg \delta$,

где $\varepsilon_{_{x}}$ – относительная диэлектрическая проницаемость.

Произведение $\varepsilon_{_{\! r}}$ tg δ называется коэффициентом диэлектрических потерь.

Второй критерий выбора материала – временная задержка сигнала в линии. Как известно, в вакууме скорость распространения сигнала (скорость света) составляет 300 000 км/с, что соответствует задержке сигнала в линии 3(3) нс/м. В реальной диэлектрической среде скорость распространения сигнала уменьшается в $\sqrt{\epsilon}$ раз.

Зависимость относительной диэлектрической проницаемости ϵ_r от частоты электрического поля 3

Теперь можно сравнить разновидности базовых материалов по этим критериям 1 (**11**)

Диэлектрическая проницаемость ε_{r} стеклоэпоксидных композиций существенно зависит от соотношения наполнитель-связующее, как показано на Рис \bullet . Это обусловлено значительной разницей ε_{r} у стекла (ε_{r} =9) и у эпоксидной смолы (ε_{r} =3,5). Закономерности формирования свойств композиционных материалов (КМ) описываются логарифмическим законом Лихтенеккера⁴:

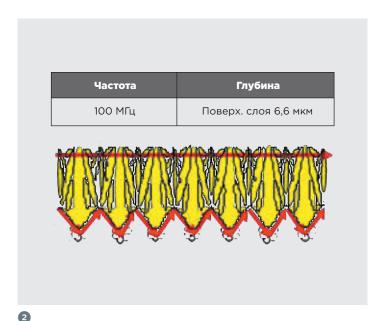
$\ln \varepsilon_{c} = V_1 \ln \varepsilon_1 + V_2 \ln \varepsilon_2$

где $\varepsilon_{_{C}}$ – диэлектрическая проницаемость КМ (смеси); $\varepsilon_{_{1}}$ и $\varepsilon_{_{2}}$ – диэлектрические проницаемости составляющих в КМ; $V_{_{1}}$ и $V_{_{2}}$ – объемное содержание компонентов в КМ.

Сравнение разновидностей базовых материалов

ТИП МАТЕРИАЛА	ДИЭЛЕКТРИЧЕ- СКАЯ ПРОНИЦАЕ- МОСТЬ, ${\bf {\cal E}_{_{\rm R}}}$	ТАНГЕНС УГЛА ДИЭЛЕКТРИЧЕ- СКИХ ПОТЕРЬ, ТG δ	ВРЕМЯ РАСПРО- СТРАНЕНИЯ СИГ- НАЛА, НС/М	КОЭФФИЦИЕНТ ДИЭЛЕКТРИЧЕ- СКИХ ПОТЕРЬ, $\mathbf{\epsilon}_{_{\mathrm{R}}}$ TG δ	НЕТЕХНОЛОГИЧ- НОСТЬ В БАЛЛАХ (ТРУДНОСТИ В ПРО- ИЗВОДСТВЕ)	ТЕПЛОПРОВО- ДНОСТЬ, ВТ/М К
Вакуум	1,0	-	3,(3)	-	-	
Политетрафторэ- тилен – PTFE	1,8-2,2	0,001	4,7	0,002	6	0,3-0,6
LTCC-керамика	10-12 (20*)	0,006	10,4-11,4 (15)	0,07 (0,12)	4	2-4
Стеклоэпоксид- ная композиция	3,1-3,3**	0,0015	5,8-6,0	0,0045	1	0,4-0,5

[·] реальные значения для керамики


[&]quot; СВЧ-стеклоэпоксид MCL-FX-2 фирмы HitachiChemical²

¹ все данные для гигагерцового диапазона

² Базовые и расходные материалы для производства печатных плат. - Каталог ООО «Остек-Сервис-Технология». - М. - 2017.

Информационные материалы фирмы Isola Asia Pacific Ltd. — www.isolaAG.com

⁴ Медведев А.М. Печатные платы. Конструкции и материалы. Москва: Техносфера. 356 с.

Проявление скин-эффекта в распространении высокочастотного сигнала по профилю поверхности фольги

Кроме того, на работоспособности плат в СВЧ-диапазоне сказывается водопоглощение, поскольку диэлектрическая проницаемость воды настолько большая (ε_r = 81), что даже незначительное её присутствие в объеме ухудшает СВЧ-свойства диэлектрического основания. Здесь опять все преимущества принадлежат РТFE, его водопоглощение почти нулевое. Чего не скажешь о керамике и обычном стеклоэпоксиде — их водопоглощение серьезно сказывается на высокочастотных характеристиках. Тем не менее, ряд изготовителей базовых материалов на основе стеклоэпоксидов, например, фирма Hitachi Chemical, нашли возможность уменьшения влагопоглощения до 0,03 %, в результате при длительном пребывании во влажной среде ε_r увеличивается не более чем на 0,04 %.

Для фольгированных диэлектриков (стеклоэпоксидов и PTFE) большое значение приобретает правильный выбор фольги, поскольку профиль проводящей поверхности сказывается на их работоспособности в СВЧ-диапазоне. Для них в основном используют электролитическую фольгу с низким (LP - low profile)) или очень низким профилем (VLP – very low profile)⁵. Это связано с тем, что с ростом частоты функционирования схемы профиль медной фольги оказывает влияние на распространение сигнала. Потому что на высоких частотах большая часть электрического сигнала сосредоточена в поверхностном слое проводника, что обусловлено так называемым «скин-эффектом» (рис 2). Высокий профиль фольги удлиняет путь следования сигнала, что влечет за собой большое его ослабление или даже потерю и увеличение времени задержки.

В **1** показаны значения глубины прохождения сигнала в зависимости от частоты, данное значение рассчитано по известной формуле:

$$δ = \sqrt{\frac{2}{\omega\mu\sigma}}$$
, εδε

 δ – глубина проводящего слоя;

 μ — абсолютная магнитная проницаемость (μ = $4\pi \times 10^{-7}$ Гн/м) σ — удельная электрическая проводимость меди, См/м (для меди σ = 5.8×10^7 См/м)

 ω – циклическая частота, рад/с (ω = 2 π f, где f – частота, Γ ц)

Значения глубины прохождения сигнала в зависимости от частоты

ЧАСТОТА	ГЛУБИНА ПРОВОДЯЩЕГО СЛОЯ
50 Гц	9,3 мм
10 МГц	21 мкм
100 МГц	6,6 мкм
1 ГГц	2,1 мкм
10 ГГц	0,66 мкм

Согласно стандарту IPC 4562 максимальные значения высоты профиля медной фольги указаны в **13** и показаны на рис **3**.

Максимальные значения высоты профиля медной фольги

тип профиля	МАКСИМАЛЬНАЯ ВЫСОТА ПРОФИЛЯ, МКМ
Стандартный профиль (S)	не обозначается
Низкий профиль (L)	10,2
Очень низкий профиль (V)	5,1

Основными преимуществами использования фольг с низким и очень низким профилем являются:

- меньшая длина распространения сигнала;
- низкий фактор подтравливания.

Для точного воспроизведения волнового сопротивления линий связи важно гарантировано обеспечить точность рассчитанной геометрии проводников, для чего необходим низкий фактор подтравливания (Рис 4).

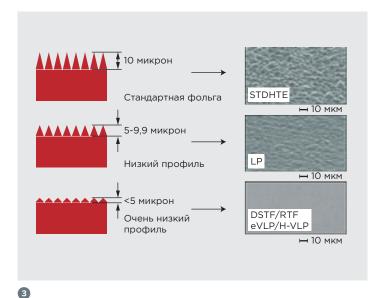
Фольга с гладкой обратной стороной (RTF или DSTF) также является одной из возможных составля-

ющих стандартной конструкции СВЧ-плат, поскольку сигнал распространяется по внутреннему полю линии.

Для керамических материалов профиль проводящей поверхности, вжигаемой в керамическую поверхность, не поддается выравниванию, что тоже (наряду с усадочными явлениями) ограничивает размеры керамических плат.

Для теплонагруженных конструкций электронных устройств важно сравнивать материалы и по тепловому сопротивлению. Здесь явные преимущества принадлежат керамике, у которой теплопроводность на порядок лучше других и составляет 2-4 Вт/м(К) в противоположность органическим материалам -0,1-0,4 Вт/м(К). Это обуславливает её исключительность в соответствующем выборе.

Поскольку базовые технологии широко распространены в производстве печатных плат, целесообразно объективно оценивать возможность использования в СВЧ-диапазоне фольгированных стеклоэпоксидных композиций. Чтобы быть конкретнее, приведем параметры стеклоэпоксидных материалов для СВЧ-устройств на примере фольгированного диэлектрика MCL-FX-2 фирмы HitachiChemical (10).



Параметры стеклоэпоксидных материалов для СВЧ-устройств на примере фольгированного диэлектрика MCL-FX-2 фирмы HitachiChemical

ПАРАМЕТРЫ	ЗНАЧЕНИЯ	ЧАСТОТА
Диэлектрическая проницаемость, ε _г	3,5	1 ГГц
Тангенс угла диэлектрических потерь, tg δ	0,001	1 ГГц
Профиль поверхности фольги, мкм	6	
Водопоглощение, %	0,03	

Результаты

- Наиболее технологичными материалами, хорошо освоенным в производстве печатных плат, являются стеклоэпоксидные композиции, специально разработанные для СВЧ-применения. В отличие от материалов на основе фторопластов, из них можно строить большое разнообразие конструкций, что реализуется в HDI-платах, гибко-жестких платах, в платах с встроенными компонентами и оптоволоконными линиями связи и т. п.
- Наименее технологичным материалом является политетрафторэтилен, его исключительные свойства в СВЧ-диапазоне создают ему преимущества только по этой причине. Платы из РТFE уже не могут на-

Профили шероховатости поверхности фольги по стандарту IPC 4562

Определение фактора подтравливания проводников печатных

- зываться «платами», потому что это уже «печатные схемы» с СВЧ-элементами: антеннами, трансформаторами, аттенюаторами и т. п. Применение PTFE затруднено еще и тем, что разнообразие конструкций плат из этого материала крайне ограничено.
- По теплопроводности явное преимущество принадлежит керамике.
- Керамические платы в некоторых отношениях хуже других альтернатив, но их сравнительно высокая теплопроводность дает им преимущества в теплонагруженных конструкциях. Из-за серьезных усадочных явлений и большой шероховатости проводящей поверхности область их применения ограничена мелкими изделиями: корпуса микросхем, подложки микросборок и т. п.